Scale of gravity and the cosmological constant within a landscape
نویسندگان
چکیده
It is possible that the scale of gravity, parametrized by the apparent Planck mass, may obtain different values within different universes in an encompassing multiverse. We investigate the range over which the Planck mass may scan while still satisfying anthropic constraints. The window for anthropically allowed values of the Planck mass may have important consequences for landscape predictions. For example, if the likelihood to observe some value of the Planck mass is weighted by the inflationary expansion factors of the universes that contain that value, then it appears extremely unlikely to observe the value of the Planck mass that is measured within our universe. This is another example of the runaway inflation problem discussed in recent literature. We also show that the window for the Planck mass significantly weakens the anthropic constraint on the cosmological constant when both are allowed to vary over a landscape.
منابع مشابه
Cosmological Landscape and Euclidean Quantum Gravity
Quantum creation of the universe is described by the density matrix defined by the Euclidean path integral. This yields an ensemble of universes — a cosmological landscape — in a mixed quasi-thermal state which is shown to be dynamically more preferable than the pure quantum state of the Hartle-Hawking type. The latter is suppressed by the infinitely large positive action of its instanton, gene...
متن کاملStudy of a Restricted Modified Gravity on astrophysical and cosmological scales
p { margin-bottom: 0in; direction: rtl; text-align: right; }p.ctl { font-size: 12pt; }a:link { color: rgb(0, 0, 255); } In this paper, we study a restricted modified gravity in which diffeomorphism symmetry is broken. We investigate the astrophysical implications of the model by using the corresponding gravitational potential. By using the weight function of the weak lensing , for the model,...
متن کاملدستهای از جوابهای دقیق گرانش با مشتقات بالاتر در چهار بعد
In this paper we consider the action of higher derivative gravity up to the second order terms in the scalars made from the Ricci scalar, Ricci and Riemann tensors. We use the Bach- Lanczos identity of the Weyl tensor in four dimensions and show that the solutions of 4-dimensional Einstein equations with cosmological constant term in vacuum, which are known as Einstein metrics, satisfy the fie...
متن کاملPseudo-redundant vacuum energy
We discuss models that can account for today’s dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a non-minimal coupling to curvature. We give a recipe for constructing models, including R + 1/R type models, tha...
متن کاملQuantum Gravity Resolution to the Cosmological Constant Problem
A finite quantum gravity theory is used to resolve the cosmological constant problem. A fundamental quantum gravity scale, ΛG ≤ 10 −3 eV, is introduced above which the quantum corrections to the vacuum energy density coupled to gravity are exponentially suppressed by a graviton vertex form factor, yielding an observationally acceptable value for the particle physics contribution to the cosmolog...
متن کامل